Engineering Monolignol p-Coumarate Conjugates into Poplar and Arabidopsis Lignins.
نویسندگان
چکیده
Lignin acylation, the decoration of hydroxyls on lignin structural units with acyl groups, is common in many plant species. Monocot lignins are decorated with p-coumarates by the polymerization of monolignol p-coumarate conjugates. The acyltransferase involved in the formation of these conjugates has been identified in a number of model monocot species, but the effect of monolignol p-coumarate conjugates on lignification and plant growth and development has not yet been examined in plants that do not inherently possess p-coumarates on their lignins. The rice (Oryza sativa) p-COUMAROYL-Coenzyme A MONOLIGNOL TRANSFERASE gene was introduced into two eudicots, Arabidopsis (Arabidopsis thaliana) and poplar (Populus alba × grandidentata), and a series of analytical methods was used to show the incorporation of the ensuing monolignol p-coumarate conjugates into the lignin of these plants. In poplar, specifically, the addition of these conjugates did not occur at the expense of the naturally incorporated monolignol p-hydroxybenzoates. Plants expressing the p-COUMAROYL-Coenzyme A MONOLIGNOL TRANSFERASE transgene can therefore produce monolignol p-coumarate conjugates essentially without competing with the formation of other acylated monolignols and without drastically impacting normal monolignol production.
منابع مشابه
Identification of grass-specific enzyme that acylates monolignols with p-coumarate.
Lignin is a major component of plant cell walls that is essential to their function. However, the strong bonds that bind the various subunits of lignin, and its cross-linking with other plant cell wall polymers, make it one of the most important factors in the recalcitrance of plant cell walls against polysaccharide utilization. Plants make lignin from a variety of monolignols including p-couma...
متن کاملMonolignol ferulate conjugates are naturally incorporated into plant lignins
Angiosperms represent most of the terrestrial plants and are the primary research focus for the conversion of biomass to liquid fuels and coproducts. Lignin limits our access to fibers and represents a large fraction of the chemical energy stored in plant cell walls. Recently, the incorporation of monolignol ferulates into lignin polymers was accomplished via the engineering of an exotic transf...
متن کاملp-Coumaroyl-CoA:monolignol transferase (PMT) acts specifically in the lignin biosynthetic pathway in Brachypodium distachyon
Grass lignins contain substantial amounts of p-coumarate (pCA) that acylate the side-chains of the phenylpropanoid polymer backbone. An acyltransferase, named p-coumaroyl-CoA:monolignol transferase (OsPMT), that could acylate monolignols with pCA in vitro was recently identified from rice. In planta, such monolignol-pCA conjugates become incorporated into lignin via oxidative radical coupling, ...
متن کاملMonolignol Acylation and Lignin Structure in Nonwoody Plants
2D NMR revealed a correspondence between the molecular structure of lignins and their degree of acylation in several nonwoody angiosperms characterized by different lignin acylation types (acetate and/or p-coumarate esters) and extents (up to more that 90% of units). Some of the lignin substructures identified showed that acylation is produced at the monolignol level. Direct evidence was also p...
متن کاملHighly acylated (acetylated and/or p-coumaroylated) native lignins from diverse herbaceous plants.
The structure of lignins isolated from the herbaceous plants sisal ( Agave sisalana), kenaf ( Hibiscus cannabinus), abaca ( Musa textilis) and curaua ( Ananas erectifolius) has been studied upon spectroscopic (2D-NMR) and chemical degradative (derivatization followed by reductive cleavage) methods. The analyses demonstrate that the structure of the lignins from these plants is highly remarkable...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 169 4 شماره
صفحات -
تاریخ انتشار 2015